

VSEPR

Valence Shell Electron Pair Repulsion Theory

Vocabulary:

"domain"

= any electron pair **Or** bond (single, double or triple) is considered one domain.

- "lone pair" = "non-bonding pair" = "unshared pair" = any electron pair that is not involved in bonding
 - "bonding pair" = "shared pair" = any electron pair that is involved in bonding

LINEAR

- 2 domains
- both are bonding pairs
- They push each other to opposite sides of center (180° apart).

 BeCl_2

3 domains on central atom

TRIGONAL PLANAR

- > 3 domains
- all are bonding pairs
- They push each other apart equally at 120° degrees.

 GaF_3

BENT

- 3 domains:
 - 2 are bonding pairs
 - 1 is a lone pair
- The 2 bonding pairs are pushed apart by 3rd pair (not seen)

 SnF_2

NOTE:

 The geometry around the central atom is trigonal planar.

The molecular shape is bent.

 SnF_2

4 domains on central atom

TETRAHEDRAL

4 domains

- Each repels the other equally 109.5° not the expected 90°.
- Think in 3D.

CH

TRIGONAL PYRAMIDAL

- 4 domains
 - 3 bonding pairs
 - 1 lone pair
- The thicker, lone pair forces the others a little bit closer together (~107.3°)

Tetrahedral vs. Trigonal pyramidal

Tetrahedral *geometry* around the central atom

Tetrahedral Molecular Shape Tetrahedral *geometry* around the central atom

Trigonal Pyramidal Molecular Shape

Tetrahedral vs. Trigonal pyramidal

On the right, the 4th lone pair, is not seen as part of the actual molecule, yet affects shape.

If another one of the bonding pairs on "trigonal pyramidal" were a lone pair, what is the result?

4 domains on central atom, con't

BENT

- 4 domains
 - 2 bonding pairs
 - 2 lone pairs
- The bonds are forced together still closer (104.5°) by the 2 thick unshared pairs.

 H_2O

Comparing the 2 "bents"...

Both bent molecules are affected by unshared pairs – 1 pair on the left, 2 on the right.

Other Molecular Geometry

TRIGONAL BIPYRAMIDAL

- 5 shared pairs
- Three pairs are found in one plane ("equator") 120° apart; the other two pairs are at the "poles," 180° apart, 90° from the "equator."

PCl₅

SEE-SAW

- 4 shared pairs &1 unshared pair
- One of the equator pairs is unshared & pushes the other 2 together.
- The 2 poles are pushed slightly together.

 SF_4

T-SHAPED

- 3 shared & 2 unshared pairs
- 2 of the 3 equator pairs are unshared.
- All 3 remaining pairs are pushed together.

LINEAR

- 2 shared & 3 unshared pairs
- All 3 equator pairs are unshared. The 2 remaining pairs are forced to the poles.

 XeF_2

5 e pairs on central atom

OCTAHEDRAL

- 6 shared pairs
- Each pair repels the others equally.
- All angles = 90°

Now, if one of these pairs was unshared ...

 SF_6

SQUARE PYRAMIDAL

- 5 shared pairs &1 unshared pair
- 4 shared pairs in one plane; the 5th pair at the pyramid's top.

If the pair at the top was unshared ...

 IF_5

SQUARE PLANAR

- 4 shared & 2 unshared pairs
- The 4 shared pairs are in the same plane; the 2 unshared pairs are 90° from them.

 $\mathsf{XeF}_{\scriptscriptstyle{4}}$

6 e pairs on central atom

4 shared, 2 unshared

Exercises

Write the Lewis structure and predict the molecular geometry of the following using VSPER Model. Draw in 3D.

- 1) OF₂
- 2) PF₃
- XeF_6
- 4) SF₄
- XeF_4
- 6) PH₃
- 7) SO₃

Molecular Geometry Dipole Moment and Polarity

Polar bonds: electronegativity difference between atoms is >0.4.

Ex: H_2O

O(3.5) - H(2.1) = 1.4Polar covalent bond

Polarity of Bonds

- Based on difference in electronegativity values
- 0.0- 0.4 nonpolar
- 0.4- 1.0 moderately polar covalent
- 1.0- 2.0 polar covalent
- ≥2.0 ionic

- Not all molecules with polar bonds are polar.
- It depends on the symmetry of the molecule
- Electrons will be pulled toward the most electronegative element in the bond.
- Different elements will pull electrons proportional to their electronegativity values.
- If electrons are evenly distributed, then the molecule is nonpolar.

Molecular Geometry Dipole Moment and Polarity

dipole moment, $\mu = 0$ D

polar, bp=100°C

dipole moment, $\mu = 1.85 D$

Dipole Moment and Molecular Geometry

Molecules that exhibit **any asymmetry** in the distribution of electrons would have a nonzero net dipole moment. These molecules are considered

polar.

Non polar
VSEPR shape
identical atoms

Polar
VSEPR shape
atoms differ

Dipole Moment and Molecular Geometry

© 2005 Brooks/Cole - Thomson

Molecular Geometry Dipole Moment and Polarity

PF₅

Non polar

VSEPR shape identical atoms

PF₄Cl

Polar
VSEPR
shape
atoms differ

PF₃Cl₂

be divided into nonpolar VSEPR shapes:

linear + triangular planar

PF₃Cl₂

Polar

Atoms differ.

Doesn't divide into nonpolar VSEPR shapes

 Go back to molecules from earlier slide and determine if they are polar or nonpolar.

