VSEPR Valence Shell Electron Pair Repulsion Theory ## Vocabulary: #### "domain" = any electron pair **Or** bond (single, double or triple) is considered one domain. - "lone pair" = "non-bonding pair" = "unshared pair" = any electron pair that is not involved in bonding - "bonding pair" = "shared pair" = any electron pair that is involved in bonding #### **LINEAR** - 2 domains - both are bonding pairs - They push each other to opposite sides of center (180° apart). BeCl_2 #### 3 domains on central atom #### TRIGONAL PLANAR - > 3 domains - all are bonding pairs - They push each other apart equally at 120° degrees. GaF_3 #### **BENT** - 3 domains: - 2 are bonding pairs - 1 is a lone pair - The 2 bonding pairs are pushed apart by 3rd pair (not seen) SnF_2 #### NOTE: The geometry around the central atom is trigonal planar. The molecular shape is bent. SnF_2 #### 4 domains on central atom #### **TETRAHEDRAL** 4 domains - Each repels the other equally 109.5° not the expected 90°. - Think in 3D. CH # TRIGONAL PYRAMIDAL - 4 domains - 3 bonding pairs - 1 lone pair - The thicker, lone pair forces the others a little bit closer together (~107.3°) ## Tetrahedral vs. Trigonal pyramidal Tetrahedral *geometry* around the central atom Tetrahedral Molecular Shape Tetrahedral *geometry* around the central atom Trigonal Pyramidal Molecular Shape ## Tetrahedral vs. Trigonal pyramidal On the right, the 4th lone pair, is not seen as part of the actual molecule, yet affects shape. If another one of the bonding pairs on "trigonal pyramidal" were a lone pair, what is the result? # 4 domains on central atom, con't #### **BENT** - 4 domains - 2 bonding pairs - 2 lone pairs - The bonds are forced together still closer (104.5°) by the 2 thick unshared pairs. H_2O ## Comparing the 2 "bents"... Both bent molecules are affected by unshared pairs – 1 pair on the left, 2 on the right. # Other Molecular Geometry #### TRIGONAL BIPYRAMIDAL - 5 shared pairs - Three pairs are found in one plane ("equator") 120° apart; the other two pairs are at the "poles," 180° apart, 90° from the "equator." PCl₅ #### **SEE-SAW** - 4 shared pairs &1 unshared pair - One of the equator pairs is unshared & pushes the other 2 together. - The 2 poles are pushed slightly together. SF_4 #### **T-SHAPED** - 3 shared & 2 unshared pairs - 2 of the 3 equator pairs are unshared. - All 3 remaining pairs are pushed together. #### LINEAR - 2 shared & 3 unshared pairs - All 3 equator pairs are unshared. The 2 remaining pairs are forced to the poles. XeF_2 ## 5 e pairs on central atom #### **OCTAHEDRAL** - 6 shared pairs - Each pair repels the others equally. - All angles = 90° Now, if one of these pairs was unshared ... SF_6 #### SQUARE PYRAMIDAL - 5 shared pairs &1 unshared pair - 4 shared pairs in one plane; the 5th pair at the pyramid's top. If the pair at the top was unshared ... IF_5 #### **SQUARE PLANAR** - 4 shared & 2 unshared pairs - The 4 shared pairs are in the same plane; the 2 unshared pairs are 90° from them. $\mathsf{XeF}_{\scriptscriptstyle{4}}$ ## 6 e pairs on central atom 4 shared, 2 unshared # Exercises Write the Lewis structure and predict the molecular geometry of the following using VSPER Model. Draw in 3D. - 1) OF₂ - 2) PF₃ - XeF_6 - 4) SF₄ - XeF_4 - 6) PH₃ - 7) SO₃ # Molecular Geometry Dipole Moment and Polarity Polar bonds: electronegativity difference between atoms is >0.4. Ex: H_2O O(3.5) - H(2.1) = 1.4Polar covalent bond ## Polarity of Bonds - Based on difference in electronegativity values - 0.0- 0.4 nonpolar - 0.4- 1.0 moderately polar covalent - 1.0- 2.0 polar covalent - ≥2.0 ionic - Not all molecules with polar bonds are polar. - It depends on the symmetry of the molecule - Electrons will be pulled toward the most electronegative element in the bond. - Different elements will pull electrons proportional to their electronegativity values. - If electrons are evenly distributed, then the molecule is nonpolar. # Molecular Geometry Dipole Moment and Polarity dipole moment, $\mu = 0$ D polar, bp=100°C dipole moment, $\mu = 1.85 D$ # Dipole Moment and Molecular Geometry Molecules that exhibit **any asymmetry** in the distribution of electrons would have a nonzero net dipole moment. These molecules are considered polar. Non polar VSEPR shape identical atoms Polar VSEPR shape atoms differ # Dipole Moment and Molecular Geometry © 2005 Brooks/Cole - Thomson # Molecular Geometry Dipole Moment and Polarity PF₅ Non polar VSEPR shape identical atoms PF₄Cl Polar VSEPR shape atoms differ PF₃Cl₂ be divided into nonpolar VSEPR shapes: linear + triangular planar PF₃Cl₂ #### Polar Atoms differ. Doesn't divide into nonpolar VSEPR shapes Go back to molecules from earlier slide and determine if they are polar or nonpolar.