Stoichiometry

Measuring the amounts of elements and compounds involved in a reaction.

Warm-Up. 3/3/15

- * Write and balance the following reaction:
 Potassium reacts with sulfur in a synthesis reaction.
- * What is the mass of potassium in 1 mol of the product?
- * If you have 12 moles of potassium, how many moles of product will you form?

Representative particle review

- * So far we've been looking at particles as ions.
- * Particles can be atoms, molecules, compounds—anything that we want to count at the atomic scale.
- * For particles "things" at the atomic scale, always multiply number of moles of "things" by Avagadro's number.

Representative Particles

* How many molecules of CO₂ do we have in 3.5 mol of CO₂?

* How many moles of KNO₃ do we have if we have 3.4 x 10²² compounds?

Mole to Mole ratio

* Ratio of moles of reactants and products in **balanced** chemical equations.

moles B

moles A

Practice

$$2C_6H_{14} + 19O_2 \longrightarrow 12CO_2 + 14H_2O$$

* For 8 moles of C₆H₁₄, how many moles of H₂O will there be?

8 moles C₆H₁₄ (14 moles H₂O/2 moles C₆H₁₄) = 56 moles H₂O

* For 3.6 moles of O₂, how many moles of CO₂ will there be?

3.6 moles O_2 (12 moles CO_2 /19 moles O_2) = 2.3 moles CO_2

Mass to mole relationship

- * Mass is how we actually measure reactants and products.
- * Use molar mass to convert moles to mass for a single element/compound/molecule.

molar
mass

grams A

moles A

Stoichiometry Roadmap

Problems

- 1. Identify where to start on map
- Identify where to end
- 3. Use conversions to get between moles A - moles B or moles A grams A

moles B

mole ratio

grams A \iff moles A

molar mass

Putting it all together

$$2C_6H_{14} + 19O_2 \longrightarrow 12CO_2 + 14H_2O$$

- * For 4.2 moles of C₆H₁₄, how many grams of H₂O will there be?
- * For 36g of C₆H₁₄, how many moles of CO₂ would be produced?

Stoichiometry Conversions

Mole to Mole Ratio

Going between elements/compounds/molecules

moles A moles B

Molar Mass

Going from moles to grams within an element/compound/molecule

moles A grams A