pHet: Molarity

Go to: https://phet.colorado.edu/en/simulation/molarity

pHet: Molarity

- 1. Adjust moles of solute while leaving volume constant. What happens to molarity when you increase moles? Decrease moles?
- 2. Adjust volume while leaving moles constant. What happens to molarity when volume is increased? Decreased?
- 3. Set sample to $Co(NO_3)_2$. What happens to color of liquid as molarity increases? Why?

Concentrations of Solutions

 Concentration of a solution: the more solute in a given volume of solvent, the more concentrated

- 1 tsp salt (NaCl)/cup of water
 vs
- 3 Tbsp salt/cup water

Molarity

Molarity is one way to measure the concentration of a solution.

Molarity (
$$M$$
) = $\frac{\text{moles of solute}}{\text{volume of solution in liters}}$

A 1.00 molar (1.00 M) solution contains 1.00 mol solute in every 1 liter of solution.

Units of molarity are: mol/L = M

Preparing a 1.0 Molar Solution

One liter of a 1.00 M NaCl solution

- need 1.00 mol of NaCl
- weigh out 58.5 g NaCl (1.00 mole) and
- add water to make 1.00 liter (total volume) of

Timberlake, General, Organic, and Biological Chemistry. Copyright © Pearson Education Inc., publishing as Benjamin Cummings

Molarity Practice

 What is the molar NaCl concentration if you have 0.5 mol NaCl in 1.00 L of solution?

 What is the molar NaCl concentration if you have 0.5 mol NaCl in 0.50 L of solution?

Molarity Practice

What is the molar NaCl concentration if you have 10.0 g of NaCl in 1.00 L of solution?

Molarity – Moles - Volume

Molarity (
$$M$$
) = $\frac{\text{moles of solute}}{\text{volume of solution in liters}}$

- Have mol and vol

 molarity
- Have molarity and vol → mol of solute
- Have molarity and mol of solute

 volume
- AND: mol of solute → grams of solute

Practice

How many moles of HCl are present in 2.5 L of 0.10 M HCl?

Given: 2.5 L of soln

0.10M HCI

Find: mol HCI = 0.10 mol/1 L HCI

Practice

What volume of a 0.10 M NaOH solution is needed to provide 0.50 mol of NaOH?

Given: 0.50 mol NaOH

0.10 M NaOH = 0.10 mol NaOH / 1L

Find: vol soln

More Practice

How many grams of CuSO₄ are needed to prepare 250.0 mL of 1.00 M CuSO₄?

Given: 250.0 mL soln

1.00 M CuSO₄

Find: g CuSO₄

Dilutions

 Many laboratory chemicals such as acids are purchased as concentrated solutions (stock solutions).

```
e.g. 12 M HCl
12 M H<sub>2</sub>SO<sub>4</sub>
```

 More dilute solutions are prepared by taking a certain quantity of the stock solution and diluting it with water.

Dilutions

 A given volume of a stock solution contains a specific number of moles of solute.

e.g.: 25 mL of 6.0 M HCl contains 0.15 mol HCl (How do you know this???)

 If 25 mL of 6.0 M HCl is diluted with 25 mL of water, the number of moles of HCl present does not change.

Still contains 0.15 mol HCI

Dilutions

moles solute before dilution

= moles solute after dilution

Dilution Calculation

 When a solution is diluted, the concentration of the new solution can be found using:

$$\mathbf{M}_1 \times \mathbf{V}_1 = \mathbf{M}_2 \times \mathbf{V}_2$$

where M₁= initial concentration (mol/L)= more concentrated

 V_1 = initial volume of more conc. solution

 M_1 = final concentration (mol/L) in dilution

 V_1 = final volume of diluted solution

Dilution Calculation

What is the concentration of a solution prepared by diluting 25.0 mL of 6.00 M HCl to a total volume of 50.0 mL?

Given:
$$V_1 = 25.0 \text{ mL}$$

$$M_1 = 6.00 M$$

$$V_2 = 50.0 \text{ mL}$$

Note: V₁and V₂ do not have to be in liters, but they must be in the same units.

Find: M_2

Use
$$V_1 \times M_1 = V_2 \times M_2$$

Solve for M₂

Practice

 How many mL of 5.0 M K₂Cr₂O₇ solution must be diluted to prepare 250 mL of 0.10 M solution?

 If 10.0 mL of a 10.0 M stock solution of NaOH is diluted to 250 mL, what is the concentration of the resulting solution?

Solution Stoichiometry

- Remember: reactions occur on a mole to mole basis.
 - For pure reactants, we measure reactants using mass
 - For reactants that are added to a reaction as aqueous solutions, we <u>measure</u> the reactants using <u>volume of</u> <u>solution</u>.

Solution Stoichiometry

Solution Stoichiometry Practice

If 25.0 mL of 2.5 M NaOH are needed to neutralize (i.e. react completely with) a solution of H_3PO_4 , how many moles of H_3PO_4 were present in the solution?

3NaOH (aq) + H_3PO_4 (aq) \rightarrow Na₃PO₄ (aq) + $3H_2O(I)$

Given: 25.0 mL 2.5 M NaOH

balanced eqn: 3 mol NaOH/1 mol H₃PO₄

Find: moles of H_3PO_4