8.1 The Nature of Covalent Bonding
> Intro to models and formulas
How do we know what compounds are made of?

MODELS of a substance show how atoms bond.

The CHEMICAL FORMULA of a substance shows what kind and number of atoms bond.

Slide 1 of 50

> Molecular Models and Formulas

Models and Chemical Formulas of Molecular Compounds

8.1

A **molecular formula** is the chemical formula of a molecular compound.

Slide 2 of 50

A **molecule** is group of atoms joined together by sharing electrons.

Lewis Structure of a Compound

The way the atoms of the molecule are connected is represented with dots and lines

© Copyright Pearson Prentice Hall

Slide 4 of 50

Period	1A	2A	3A	4A	5A	6A	7A	8A
1	Η·							He
2	Li	·Be·	٠ <u>₿</u> ٠	٠Ċ	٠Ņ	:Ö·	:Ë·	:Ne:
3	Na∙	∙Mg∙	٠Å	·Śi·	٠Ë٠	:Ş·	:Ċļ·	րr
4	K	∙Ca	Ga	Ge	As	Se	:Br	:K̈́r:

5 Of 50

Single electrons: can bond with other atoms.

Pair of electrons: orbital is full and cannot bond with another atom. These are nonbonded or lone pair electrons.

Examples: Nitrogen, Carbon

Slide 6 of 50 Two atoms held together by sharing a pair of electrons are joined by a single covalent bond.

> Single Covalent Bonds

The Nature of

Covalent Bonding

8.2

> Single Covalent Bonds

Another way to show the bonds is by drawing a dash (line) for every pair of shared electrons.

This is called a STRUCTURAL FORMULA.

For example, the structural formula H - H,

in which a dash (-) replaces the pair of dots (:)

Slide 8 of 50 Example: the ammonia molecule has one unshared pair of electrons.

> Single Covalent Bonds

The Nature of

Covalent Bonding

8.2

Atoms form double or triple covalent bonds if they can attain a noble gas structure by sharing two pairs or three pairs of electrons.

$$\dot{O}$$
: + \dot{O} : \longrightarrow \dot{O} : \dot{O} : or \dot{O} = \dot{O} :

Example:

8.2

The Nature of

Covalent Bonding

Oxygen Oxygen atom atom

Oxygen molecule

> Double and Triple Covalent Bonds

Oxygen molecule

© Copyright Pearson Prentice Hall

Slide 10 of 50

Octet Rule:

- Atoms will have enough electrons to achieve noble gas configuration.
- H = 2 electrons
- Period 2 = 8 electrons
- Period 3 and higher can have more than 8 if necessary (10 or 12)

Slide 11 of 50

Lewis Dot Structures:

Two dimensional model of a molecular structure where bonds are shown as lines and lone pairs are written as two dots.

© Copyright Pearson Prentice Hall

Slide 12 of 50

Steps for Writing Lewis Dot Structures of Molecular Compounds:

- 1. Add up the valence electrons of all the atoms.
- 2. Connect the atoms around the central atom with a single bond. Central atom is usually written first in formula and is the usually the least electronegative. (It is not hydrogen)
- 3. Add remaining lone pair electrons.
- 4. Fill in remaining valence electrons using double or triple bonds to give every atom a full octet.
- 5. Double check that all valence electrons are accounted for.

Slide 13 of 50

The Nature of > **Covalent Bonding**

Example: F₂ Total valence electrons= 14

 $: \ddot{\mathbf{F}} \cdot + \dot{\mathbf{F}} : \longrightarrow : \ddot{\mathbf{F}} : \ddot{\mathbf{F}} : or : \ddot{\mathbf{F}} - \ddot{\mathbf{F}} :$

Fluorine atom

Fluorine atom

Fluorine molecule

Slide 14 of 50

The Nature of > Covalent Bonding

Example: N₂

Total valence electrons= 10

© Copyright Pearson Prentice Hall

Slide 15 of 50 The Nature of Covalent Bonding

Example: CO₂ Total valence electrons= 16

$$O = C = O$$

Remember, C and O must have 8 electrons. Also all v.e. must be accounted for...

© Copyright Pearson Prentice Hall

Slide 16 of 50