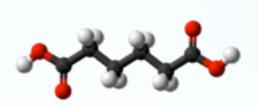
Warm up

What is the % composition of C, H, and O in Ibuprofen?
 (C₁₃H₁₈O₂)

- How many grams of C do you have in an average dose (0.500g)?
- The max daily dose of Ibuprofen contains 0.496g of O, what is the max daily dose in grams?

Empirical Formula


• Lowest ratio of elements in a compound.

CH₂O

$C_6H_{12}O_6$	C	Н	0	Total
Molar Mass	72.07 g	12.09 g	95.99 g	180.16 g
% Composition	40%	6.7%	53.3%	100%

$C_3H_6O_3$	С	Н	0	Total
Molar Mass	36.03 g	6.048 g	53.28 g	90.78 g
% Composition	40%	6.7%	53.3%	100%

Finding molar mass using empirical formula - Adipic Acid

The empirical formula for adipic acid is $C_3H_5O_2$. The molar mass of adipic acid is 146 g/mol.

What is the molecular formula of adipic acid?

- 1. Find the formula mass of the empirical formula.
- 2. Divide the actual molecular mass by the empirical formula mass to get conversion factor.
- 3. Multiply the empirical formula subscripts by

1. Find the molar mass of the empirical formula.

The empirical formula for adipic acid is $C_3H_5O_2$.

$$3(12.01 \text{ g}) + 5(1.01) + 2(16.00) = 73.08 \text{ g}$$
C

H

O

2. Divide the actual molar mass by the empirical formula mass to get conversion factor.

Molar mass of $C_3H_5O_2 = 73.08 g$

Molar mass of adipic acid = 146 g/mol

$$\frac{146g}{73g} = 2$$

Adipic acid is twice as large as the empirical formula

3. Multiply the empirical formula subscripts by conversion factor to get molecular formula.

$$(C_3H_5O_2)$$
 x 2 = $C_6H_{10}O_4$
Empirical Formula Conversion Molecular
Factor Formula

Working with molecular objects (single compounds/molecules) we only use subscripts.

Practice - Write the molecular formulas from the following empirical formulas and molar masses

Molar Mass	Empirical Formula	Molecular Formula
78.11 g	CH	C_6H_6
239.76 g	AgC	Ag_2C_2
142.28 g	C_5H_{11}	$C_{10}H_{22}$

Empirical Formula Determination

- Start with the number of grams of each element
 - If percentages are given, assume that the total mass is 100 grams so that the mass of each element = the percent given.
- Convert the mass of each element to moles using the molar mass.
- Divide each value of moles by the smallest of the values.
- Multiply each number by an integer to obtain all whole numbers.

Step 1: Find your grams - C₃H₅O₂

 Adipic acid contains 49.32% C, 43.84% O, and 6.85% H by mass. What is the empirical formula of adipic acid?

Assume total grams = 100g

C: 0.4932*100g = 49.32g

O: 0.4384 * 100g= 43.84g

H: 0.0685 * 100g = 6.85g

Step 2 - Convert grams to moles - Adipic Acid

49.32 g C	1 mol C 12.01 g C	4.107 mol C
6.85 g H	1 mol H 1.01 g H	6.78 mol H
43.84 g O	1 mol O 16.00 g O	2.74 mol O

Step 3- Divide calculated moles by lowest number - Adipic Acid

$$\frac{6.78 \text{ mol H}}{2.74 \text{ mol}} = 2.47$$

Your lowest element should always be 1.

Step 4: Multiply each number by the same integer to obtain all whole numbers.

Values determined after multiplying will be subscripts for empirical formula.

Empirical formula Adipic Acid: C₃H₅O₂

Common Multiplication Factors

- If 0.5 present in decimal multiply by 2
- If 0.33 present in decimal multiply by 3
- If 0.66 present in decimal multiply by 3

Practice

• Determine the empirical formula for an unknown compound composed of 36.5% sodium, 38.1% oxygen, and 25.4% sulfur by mass.

Na₂SO₃

• If the molar mass is 126.043 g, what is the molecular formula of the compound?

 Na_2SO_3

 What can you say about the empirical formula of compounds (ionic bonding)?

They are the same for ionic compounds