Ch. 14 - Gases

I. Physical Properties

A. Kinetic Molecular Theory

o Particles in an ideal gas...

- have no volume.
- have elastic collisions.
- are in constant, random, straightline motion.
- don' t attract or repel each other.
- have an avg. KE directly related to Kelvin temperature.

B. Real Gases

Particles in a REAL gas...

- have their own volume
- attract each other

Gas behavior is most ideal...

- at low pressures
- at high temperatures
- just like students (think summer!)

C. Characteristics of Gases

Gases expand to fill any container.

- random motion, no attraction
a Gases are fluids (like liquids). - no attraction

Gases have very low densities.

- no volume = lots of empty space

0	8	8
0	0	8
	0	8
0	8	8
8	8	8

C. Characteristics of Gases

Gases can be compressed. - no volume = lots of empty space - Gases undergo diffusion \& effusion. - random motion

D. Temperature

\% Always use absolute temperature (Kelvin) when working with gases.

$$
{ }^{\circ} \mathrm{C}=\frac{5}{9}\left({ }^{\circ} \mathrm{F}-32\right) \quad \mathrm{K}={ }^{\circ} \mathrm{C}+273
$$

E. Pressure

area

Which shoes create the most pressure?

F. STP

Standard Temperature \& Pressure
$0^{\circ} \mathrm{C}$ 273 K
-OR-
1 atm
101.325 kPa

Ch. 14 - Gases

A. Boyle's Law

Volume $(\mathbf{m L})$	Pressure (torr)	$\mathbf{P} \cdot \mathbf{V}$ $(\mathbf{m L} \cdot$ torr $)$
10.0	760.0	7.60×10^{3}
20.0	379.6	7.59×10^{3}
30.0	253.2	7.60×10^{3}
40.0	191.0	7.64×10^{3}

$\mathbf{P V}=\mathbf{k}$

A. Boyle's Law

The pressure and volume of a gas are inversely related

- at constant mass \& temp

A. Boyle's Law

Boyle's Law Video

B. Charles' Law

Volume $(\mathbf{m L})$	Temperature (\mathbf{K})	V/T $(\mathbf{m L} / \mathbf{K})$
40.0	273.2	0.146
44.0	298.2	0.148
47.7	323.2	0.148
51.3	348.2	0.147

C

B. Charles' Law

. The volume and absolute temperature (K) of a gas are directly related

- at constant mass \& pressure

B. Charles' Law

Charles' Law

C. Gay-Lussac's Law

Temperature (K)

248
273
298
373
元

C. Gay-Lussac's Law

The pressure and absolute temperature (K) of a gas are directly related

- at constant mass \& volume

C. Gay-Lussac's Law

o Gav-Lussac's Law

Equations for the three Gas

Laws
Charles's Law

$$
V_{1} / T_{1}=V_{2} / T_{2}
$$

o Boyle's Law

$$
P_{1} V_{1}=P_{2} V_{2}
$$

© Gay-Lussac's Law

$$
P_{1} / T_{1}=P_{2} / T_{2}
$$

D. Combined Gas Law

Standard Temperature \& Pressure

$0^{\circ} \mathrm{C}$
-OR-

273 K
1 atm
101.325 kPa

E. Gas Law Problems

A gas occupies 473 L at $36^{\circ} \mathrm{C}$. Find its volume at $94^{\circ} \mathrm{C}$.

CHARLES' LAW

GIVEN: T^ V^ WORK:

$\mathrm{V}_{1}=473 \mathrm{~L}$
$\mathrm{T}_{1}=36^{\circ} \mathrm{C}=309 \mathrm{~K}$
$\mathrm{V}_{2}=$?
$\mathrm{T}_{2}=94^{\circ} \mathrm{C}=367 \mathrm{~K} \quad \mathrm{~V}_{2}=562 \mathrm{~L}$

E. Gas Law Problems

o A gas occupies 100 . mL at 1.5 atm . Find its volume at 2 atm.

BOYLE' S LAW

GIVEN: $P \uparrow V_{\downarrow}$ WORK:

$\mathrm{V}_{1}=100 \mathrm{~mL}$
$P_{1}=1.5 \mathrm{~atm}$
$\mathrm{V}_{2}=$?
$\mathrm{P}_{2}=2 \mathrm{~atm}$
$P_{1} V_{1}=P_{2} V_{2}$
$(1.5 \mathrm{~atm})(100 . \mathrm{mL})=(2 \mathrm{~atm}) \mathrm{V}_{2}$
$\mathrm{V}_{2}=75.0 \mathrm{~mL}$

E. Gas Law Problems

A gas occupies $7.84 \mathrm{~cm}^{3}$ at 0.709 atm \& $25^{\circ} \mathrm{C}$. Find its volume at STP. COMBINED GAS LAW

GIVEN: P^ T\| V ${ }_{\downarrow}$ WORK:

$\mathrm{V}_{1}=7.84 \mathrm{~mL}$
$P_{1} V_{1} T_{2}=P_{2} \mathrm{~V}_{2} \mathrm{~T}_{1}$
$P_{1}=0.709 \mathrm{~atm}$
$\mathrm{T}_{1}=25^{\circ} \mathrm{C}=298 \mathrm{~K}$
$\mathrm{V}_{2}=$?
$\mathrm{P}_{2}=1 \mathrm{~atm}$
$(0.709 \mathrm{~atm})(7.84 \mathrm{~mL})(273 \mathrm{~K})$
$=(1 \mathrm{~atm}) \mathrm{V}_{2}(298 \mathrm{~K})$
$\mathrm{T}_{2}=273 \mathrm{~K}$

E. Gas Law Problems

© A gas' pressure is 1 atm at $23^{\circ} \mathrm{C}$. At what temperature will the pressure be 0.737 atm?
GAY-LUSSAC' S LAW

GIVEN: $P \downarrow T \downarrow$ WORK:
$P_{1}=1 \mathrm{~atm}$
$\mathrm{T}_{1}=23^{\circ} \mathrm{C}=296 \mathrm{~K}$
$\mathrm{P}_{1} / \mathrm{T}_{1}=\mathrm{P}_{2} / \mathrm{T}_{2}$
$\mathrm{P}_{2}=0.737 \mathrm{~atm}$ $\mathrm{T}_{2}=$?

$$
\mathrm{T}_{2}=218 \mathrm{~K}=-55^{\circ} \mathrm{C}
$$

Ch. 14 -Gases

IIJ. Ideal Gas Law

Ideal Gas Assumptions...

o Particles in an ideal gas...

- have no volume.
- have elastic collisions.
- are in constant, random, straightline motion.
- don' t attract or repel each other.
- have an avg. KE directly related to Kelvin temperature.

B. Real Gases

Particles in a REAL gas...

- have their own volume
- attract each other

Gas behavior is most ideal...

- at low pressures
- at high temperatures
- just like students (think summer!)

A. Avogadro's Principle

Gas	Volume $(\mathbf{m L})$	Mass (\mathbf{g})	Moles, \mathbf{n}	\mathbf{V} / \mathbf{n} $(\mathbf{L} / \mathbf{m o l})$
O_{2}	100.0	0.122	3.81×10^{-3}	26.2
$\mathrm{~N}_{2}$	100.0	0.110	3.93×10^{-3}	25.5
CO_{2}	100.0	0.176	4.00×10^{-3}	25.0

A. Avogadro's Principle

o Equal volumes of gases contain equal numbers of moles

- at constant temp \& pressure
- true for any gas

B. Ideal Gas Law

PV
 = R

UNIVERSAL GAS

 CONSTANT$\mathrm{R}=0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K}$ $\mathrm{R}=8.315 \mathrm{~L} \cdot \mathrm{kPa} / \mathrm{mol} \cdot \mathrm{K}$

B. Ideal Gas Law

$P V=n R T$

UNIVERSAL GAS CONSTANT $\mathrm{R}=0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K}$ $\mathrm{R}=8.315 \mathrm{~L} \cdot \mathrm{kPa} / \mathrm{mol} \cdot \mathrm{K}$

B. Ideal Gas Law

- Calculate the pressure in atmospheres of 0.412 mol of He at $16^{\circ} \mathrm{C}$ \& occupying 3.25 L. IDEAL GAS LAW

GIVEN:
WORK:
$P=? ~ a t m$
PV = nRT
$\mathrm{n}=0.412 \mathrm{~mol}$
$\mathrm{T}=16^{\circ} \mathrm{C}=289 \mathrm{~K}$
$\mathrm{V}=3.25 \mathrm{~L}$
$\mathrm{R}=0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K}$
$P(3.25)=(0.412)(0.0821)(289)$
L mol L.atm/mol.K K
$P=3.01 \mathrm{~atm}$

B. Ideal Gas Law

Find the volume of 85 g of O_{2} at $25^{\circ} \mathrm{C}$ and 1 atm .

IDEAL GAS LAW
GIVEN:
WORK:
$\mathrm{V}=$?
$\mathrm{n}=$?

85 g	1 mol
32.00 g	

$\mathrm{T}=25^{\circ} \mathrm{C}=298 \mathrm{~K}$
$\mathrm{P}=1 \mathrm{~atm}$
$\mathrm{R}=0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K}$
(1) $\mathrm{V}=(2.7 \mathrm{~mol})(0.0821)$
(298)
$V=64 L$

$P V=n R T$ is all you need!

Just know this one equation and you can derive all the others!

