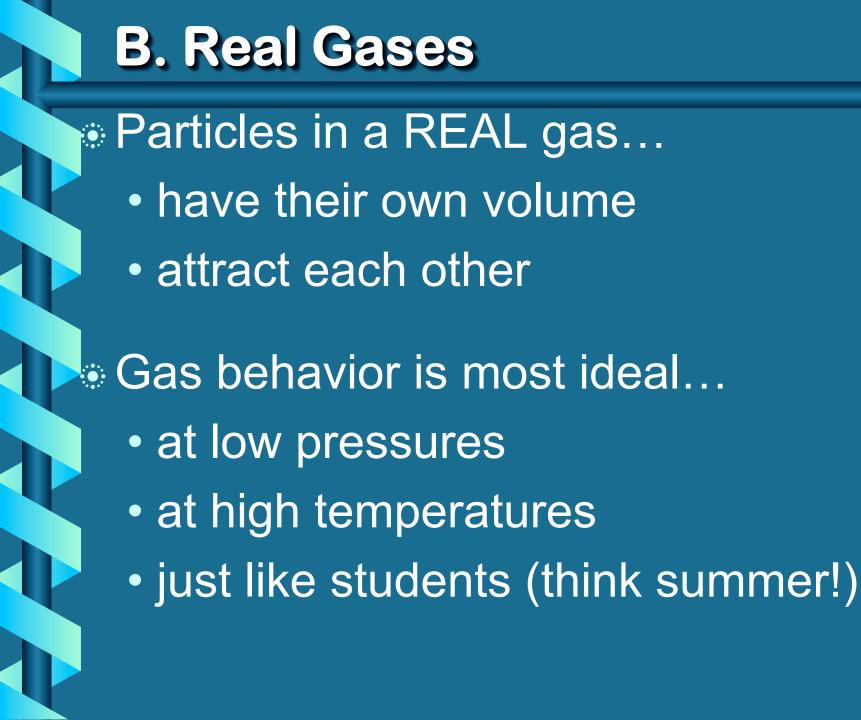
Ch. 14 - Gases

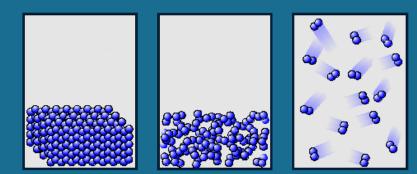


I. Physical Properties

A. Kinetic Molecular Theory

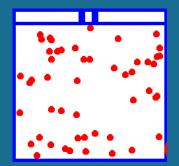
Particles in an ideal gas...

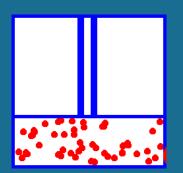
- have no volume.
- have elastic collisions.
- are in constant, random, straightline motion.
- don't attract or repel each other.
- have an avg. KE directly related to Kelvin temperature.



Gases expand to fill any container.
random motion, no attraction

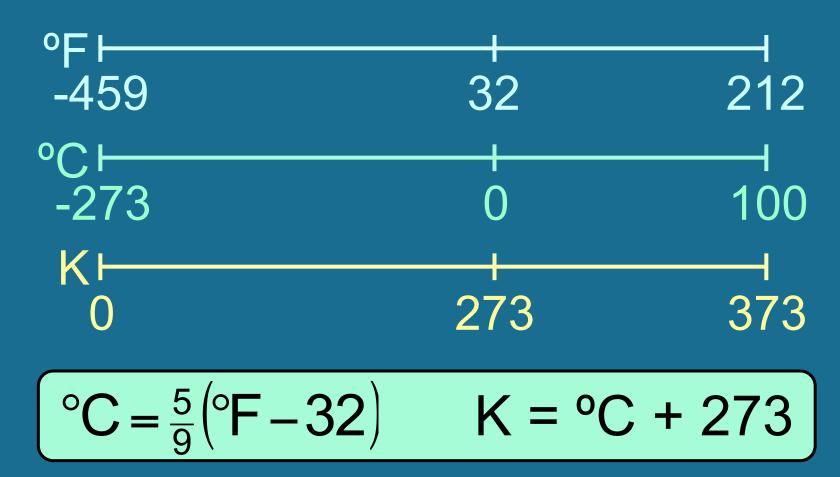
Gases are fluids (like liquids).no attraction

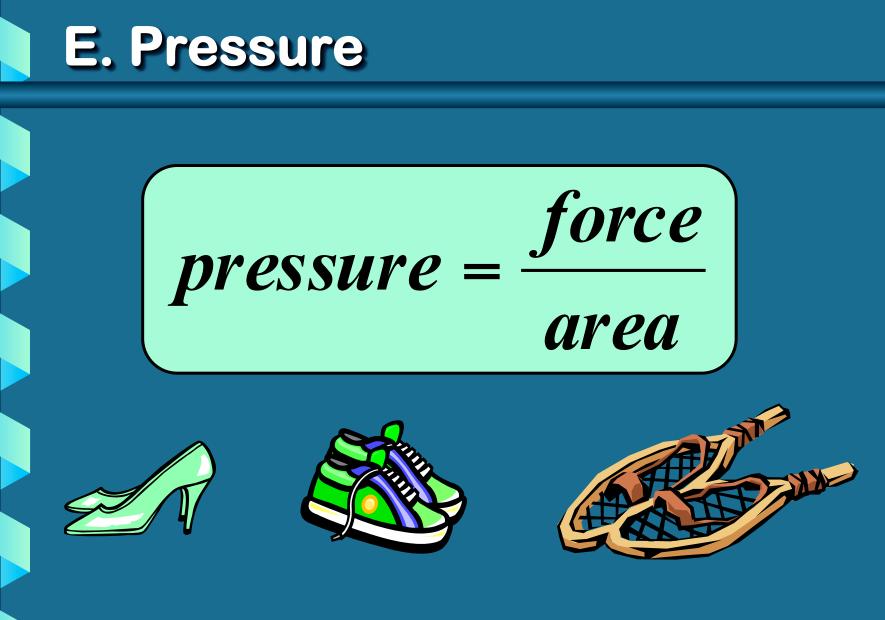

Gases have very low densities.
no volume = lots of empty space



Gases can be compressed.
no volume = lots of empty space

Gases undergo diffusion & effusion.
random motion

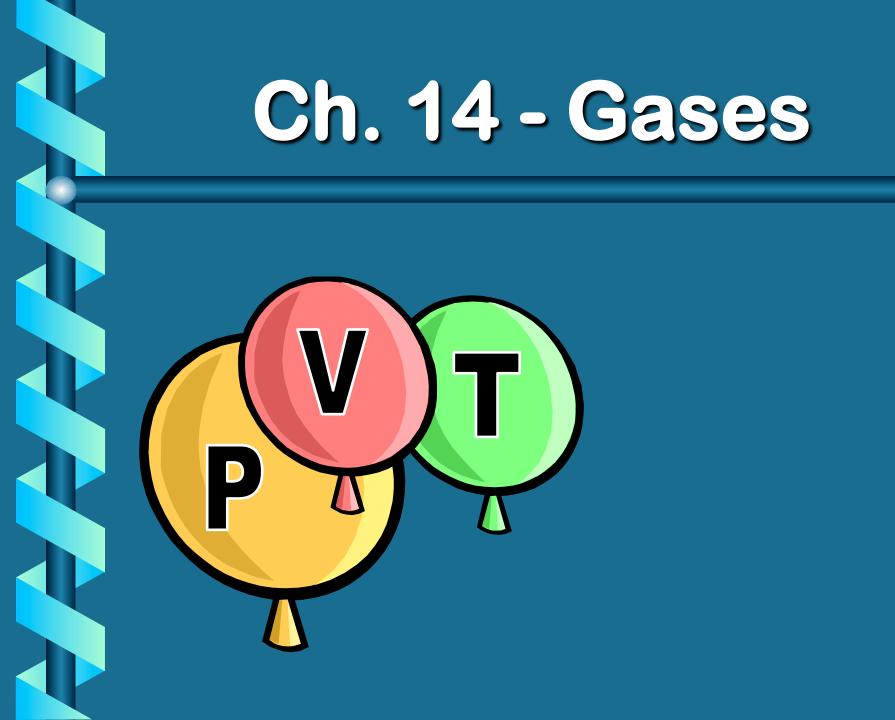




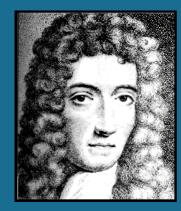
D. Temperature

 Always use absolute temperature (Kelvin) when working with gases.

Which shoes create the most pressure?

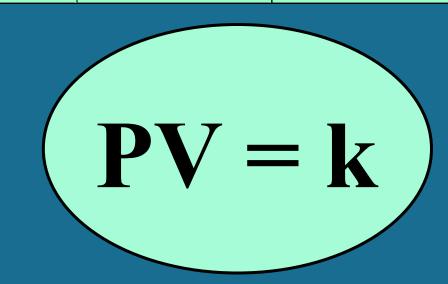


F. STP



Standard Temperature & Pressure

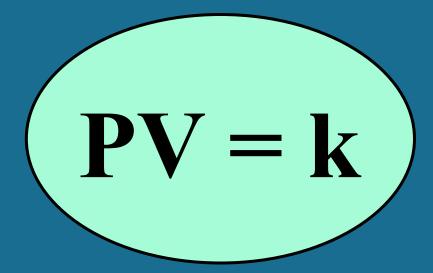
0°C 273 K -OR-1 atm 101.325 kPa



A. Boyle's Law

D

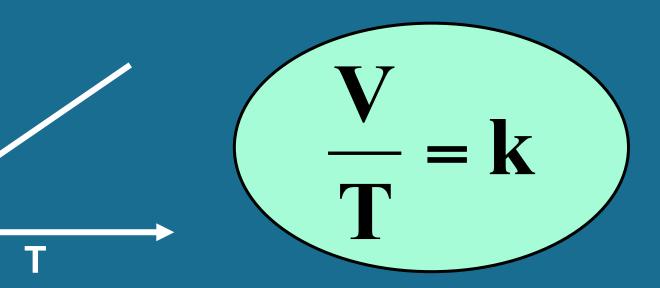
Volume (mL)	Pressure (torr)	P·V (mL·torr)
10.0	760.0	7.60×10^3
20.0	379.6	7.59×10^3
30.0	253.2	7.60×10^3
40.0	191.0	7.64×10^3



A. Boyle's Law

The pressure and volume of a gas are inversely related

at constant mass & temp


A. Boyle's Law

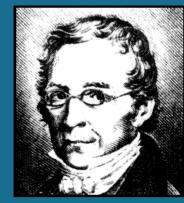
<u>Boyle's Law Video</u>

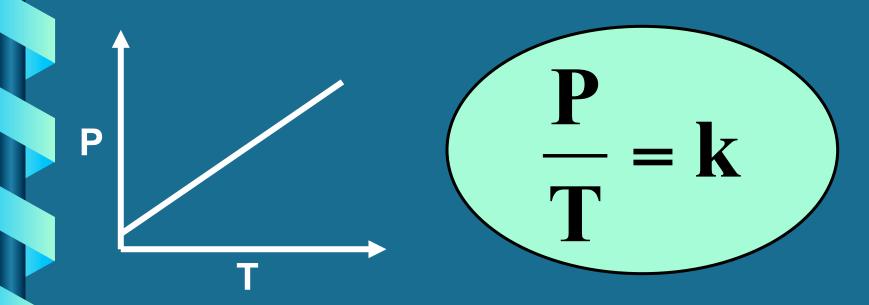
B. Charles' Law

Volume (mL)	Temperature (K)	V/T (mL/K)
40.0	273.2	0.146
44.0	298.2	0.148
47.7	323.2	0.148
51.3	348.2	0.147

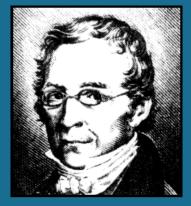
B. Charles' Law

 The volume and absolute temperature (K) of a gas are directly related


at constant mass & pressure


B. Charles' Law

Charles' Law


C. Gay-Lussac's Law

Temperature (K)	Pressure (torr)	P/T (torr/K)
248	691.6	2.79
273	760.0	2.78
298	828.4	2.78
373	1,041.2	2.79

C. Gay-Lussac's Law

 The pressure and absolute temperature (K) of a gas are directly related

at constant mass & volume

C. Gay-Lussac's Law

Equations for the three Gas Laws Charles's Law $V_1/T_1 = V_2/T_2$ Boyle's Law $P_1V_1 = P_2V_2$ Gay-Lussac's Law $P_1/T_1 = P_2/T_2$

$\begin{array}{c} \mathbf{P}_1 \mathbf{V}_1 \\ \mathbf{T}_1 \end{array} = \begin{array}{c} \mathbf{P}_2 \mathbf{V}_2 \\ \mathbf{T}_2 \end{array}$

Standard Temperature & Pressure

0°C 273 K -OR-1 atm 101.325 kPa

E. Gas Law Problems		
A gas occupies 473 L at 36°C. Find its volume at 94°C.		
СН	ARLES' LAW	
GIVEN: T↑ V↑	WORK:	
$V_1 = 473 L$ $T_1 = 36^{\circ}C = 309K$ $V_2 = ?$ $T_2 = 94^{\circ}C = 367K$	$V_1/T_1 = V_2/T_2$ (473 L)(367 K)= V_2 (309 K) $V_2 = 562$ L	

E. Gas Law Problems		
	occupies 100. mL at 1.5 atm. s volume at 2 atm.	
	BOYLE' S LAW	
GIVEN: P↑ V↓	WORK:	
$V_1 = 100. \text{ mL}$ $P_1 = 1.5 \text{ atm}$ $V_2 = ?$ $P_2 = 2 \text{ atm}$	$P_1V_1 = P_2V_2$ (1.5 atm)(100.mL)=(2 atm)V ₂ $V_2 = 75.0 mL$	

E. Gas Law Problems

 A gas occupies 7.84 cm³ at 0.709 atm & 25°C. Find its volume at STP.
 COMBINED GAS LAW

GIVEN: P↑ T↓ V↓ WORK:

 $V_1 = 7.84 \text{ mL}$

 $P_1 = 0.709 \text{ atm}$

 $T_1 = 25^{\circ}C = 298 \text{ K}$

 $V_2 = ?$ $P_2 = 1 \text{ atm}$ $T_2 = 273 \text{ K}$ (0.709 atm)(7.84 mL)(273 K)=(1 atm)V₂(298 K)

 $V_2 = 5.09 \text{ mL}$

 $P_1V_1T_2 = P_2V_2T_1$

E. Gas Law Problems

A gas' pressure is 1 atm at 23°C.
 At what temperature will the pressure be 0.737 atm?
 GAY-LUSSAC'S LAW

GIVEN: **P↓T↓** WORK:

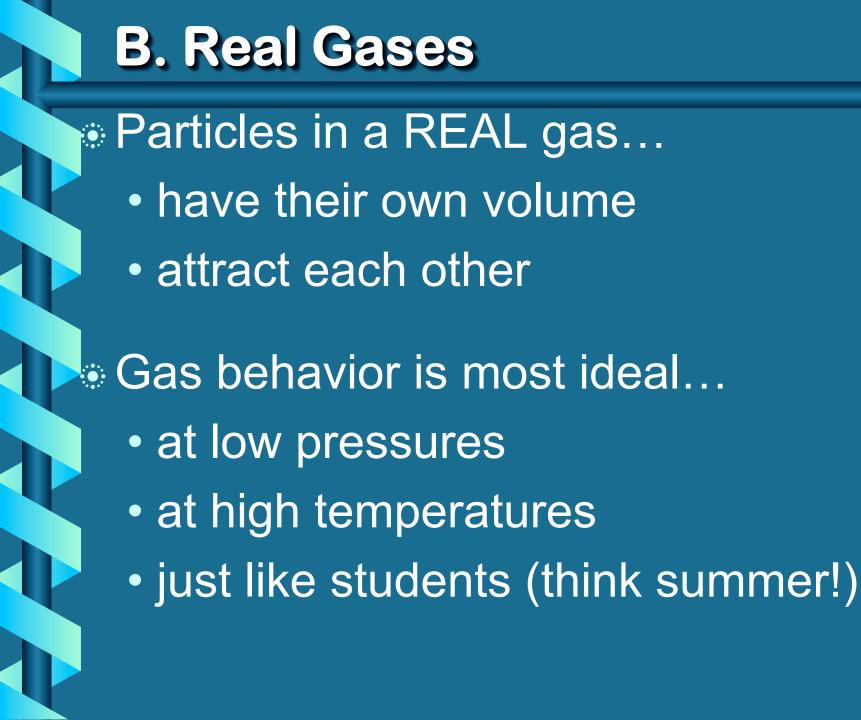
 $P_1 = 1 \text{ atm}$

 $T_1 = 23^{\circ}C = 296K$

 $P_2 = 0.737$ atm

 $P_1/T_1 = P_2/T_2$ (1atm) $T_2 = (0.737 \text{ atm})(296\text{K})$

 $T_2 = 218 \text{ K} = -55^{\circ}\text{C}$


Ch. 14 - Gases

III. Ideal Gas Law

Ideal Gas Assumptions...

Particles in an ideal gas...


- have no volume.
- have elastic collisions.
- are in constant, random, straightline motion.
- don't attract or repel each other.
- have an avg. KE directly related to Kelvin temperature.

A. Avogadro's Principle

Gas	Volume (mL)	Mass (g)	Moles, n	V/n (L/mol)
O ₂	100.0	0.122	3.81×10^{-3}	26.2
N_2	100.0	0.110	3.93×10^{-3}	25.5
CO_2	100.0	0.176	4.00×10^{-3}	25.0

A. Avogadro's Principle

 Equal volumes of gases contain equal numbers of moles

- at constant temp & pressure
- true for any gas

UNIVERSAL GAS CONSTANT R=0.0821 L·atm/mol·K R=8.315 L·kPa/mol·K

PV=nRT UNIVERSAL GAS CONSTANT R=0.0821 L·atm/mol·K R=8.315 L·kPa/mol·K

B. Ideal G	as Law	
 Calculate the pressure in atmospheres of 0.412 mol of He at 16°C & occupying 3.25 L. IDEAL GAS LAW 		
GIVEN:	WORK:	
P = ? atm	PV = nRT	
n = 0.412 mol T = 16°C = 289 K	P(3.25)=(0.412)(0.0821)(289) L mol L·atm/mol·K K	
V = 3.25 L R = 0.0821L·atm/mol·K	P = 3.01 atm	

B. Ideal Gas Law		
 Find the volume of 85 g of O₂ at 25°C and 1 atm. IDEAL GAS LAW 		
GIVEN:	WORK:	
V = ?	85 g 1 mol = 2.7 mol	
n = ?	32.00 g	
$T = 25^{\circ}C = 298 K$	(1)V=(2.7mol) (0.0821)	
P=1 atm	(298)	
R = 0.0821L·atm/mol·K	V = 64 L	

PV=nRT is all you need!

Just know this one equation and you can derive all the others!