The 3 Main Periodic Trends

- Atomic Size
- Ionization Energy
- Electronegativity

•The atomic radius is one half of the distance between the nuclei of two atoms of the same element when the atoms are joined.

- •Group and Periodic Trends in Atomic Size
 - •In general, atomic size increases from top to bottom within a group and decreases from left to right across a period.

Trends in Atomic Size

Ions

- Some compounds are composed of particles called ions.
 - An ion is an atom or group of atoms that has a positive or negative charge.
 - A cation is an ion with a positive charge.
 - An anion is an ion with a negative charge.

Ions

•Positive and negative ions form when electrons are transferred between atoms.

Ions

•Positive and negative ions form when electrons are transferred between atoms.

Ionic Size

- Cations are always smaller than the atoms from which they form.
- Anions are always larger than the atoms from which they form.

- The energy required to remove an electron from an atom is called ionization energy.
 - The energy required to remove the first electron from an atom is called the first ionization energy.

- Group and Periodic Trends in Ionization
 Energy
 - •First ionization energy tends to decrease from top to bottom within a group and increase from left to right across a period.
 - The higher the nuclear charge, the harder it is to remove electron. Therefore, ionization energy is larger.

Trends in Electronegativity

- Trends in Electronegativity
 - Electronegativity is the ability of an atom of an element to attract electrons when the atom is in a compound.
 - •In general, electronegativity values decrease from top to bottom within a group. For representative elements, the values tend to increase from left to right across a period.
 - •The greater the nuclear charge, the more easily the atom attracts electrons. Except for noble gases, whose electron configuration is full, so no more room for electrons!

I renas in

Electronegativity
•Representative Elements in Groups 1A through 7A

_		_	_
Ta	h 1		
			_

Electronegativity Values for Selected Elements							
H 2.1							
Li 1.0	Be 1.5	B 2.0	C 2.5	N 3.0	O 3.5	F 4.0	
Na 0.9	Mg 1.2	Al 1.5	Si 1.8	P 2.1	S 2.5	CI 3.0	
K 0.8	Ca 1.0	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8	
Rb 0.8	Sr 1.0	In 1.7	Sn 1.8	Sb 1.9	Te 2.1	I 2.5	
Cs 0.7	Ba 0.9	TI 1.8	Pb 1.9	Bi 1.9			

Trends in Electronegativity

