The 3 Main Periodic Trends - Atomic Size - Ionization Energy - Electronegativity •The atomic radius is one half of the distance between the nuclei of two atoms of the same element when the atoms are joined. - •Group and Periodic Trends in Atomic Size - •In general, atomic size increases from top to bottom within a group and decreases from left to right across a period. #### **Trends in Atomic Size** #### Ions - Some compounds are composed of particles called ions. - An ion is an atom or group of atoms that has a positive or negative charge. - A cation is an ion with a positive charge. - An anion is an ion with a negative charge. #### Ions •Positive and negative ions form when electrons are transferred between atoms. #### Ions •Positive and negative ions form when electrons are transferred between atoms. #### Ionic Size - Cations are always smaller than the atoms from which they form. - Anions are always larger than the atoms from which they form. - The energy required to remove an electron from an atom is called ionization energy. - The energy required to remove the first electron from an atom is called the first ionization energy. - Group and Periodic Trends in Ionization Energy - •First ionization energy tends to decrease from top to bottom within a group and increase from left to right across a period. - The higher the nuclear charge, the harder it is to remove electron. Therefore, ionization energy is larger. ## Trends in Electronegativity - Trends in Electronegativity - Electronegativity is the ability of an atom of an element to attract electrons when the atom is in a compound. - •In general, electronegativity values decrease from top to bottom within a group. For representative elements, the values tend to increase from left to right across a period. - •The greater the nuclear charge, the more easily the atom attracts electrons. Except for noble gases, whose electron configuration is full, so no more room for electrons! ## I renas in Electronegativity •Representative Elements in Groups 1A through 7A | _ | | _ | _ | |----|-----|---|---| | Ta | h 1 | | | | | | | _ | | Electronegativity Values for Selected Elements | | | | | | | | |--|------------------|------------------|------------------|------------------|-----------------|------------------|--| | H
2.1 | | | | | | | | | Li
1.0 | Be
1.5 | B 2.0 | C
2.5 | N
3.0 | O
3.5 | F
4.0 | | | Na
0.9 | Mg
1.2 | Al
1.5 | Si
1.8 | P 2.1 | S
2.5 | CI
3.0 | | | K
0.8 | Ca
1.0 | Ga
1.6 | Ge
1.8 | As 2.0 | Se 2.4 | Br 2.8 | | | Rb
0.8 | Sr
1.0 | In
1.7 | Sn
1.8 | Sb 1.9 | Te 2.1 | I
2.5 | | | Cs
0.7 | Ba
0.9 | TI
1.8 | Pb
1.9 | Bi
1.9 | | | | ## Trends in Electronegativity