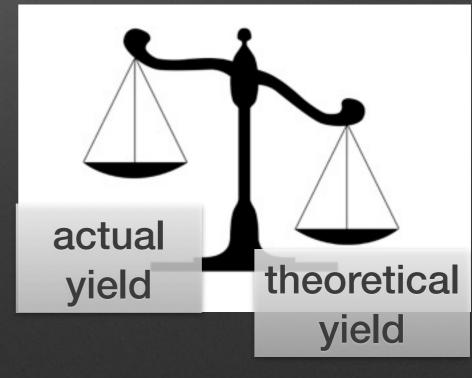
Percent Yield

3/13/2015

Warm Up 3/13/2015

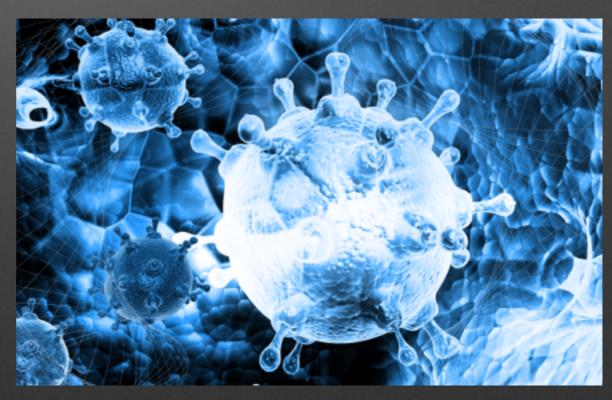
 Methanogens are bacteria that live in the guts of cows helping them digest grass. They generate methane (CH₄) as a byproduct of metabolism using the following equation:

$$CO_2 + 4 H_2 \rightarrow CH_4 + 2H_2O$$

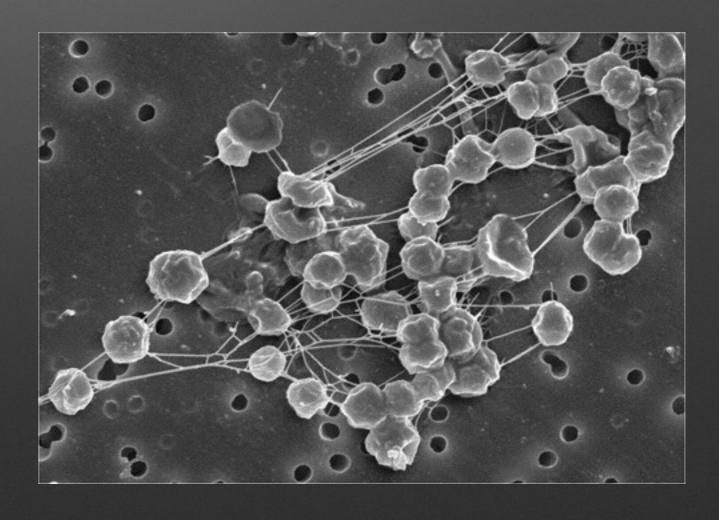

- In a reactor you have 45g of CO₂ and 18g of H₂. How much methane can bacteria generate?
 - Identify the limiting reagent
 - Identify the excess reagent
 - How much excess reagent remains unused in the reaction?

Percent Yield

 Amount of product calculated from balanced equation is the theoretical yield.


 In life nothing is perfect, so not all the theoretical yield is formed. The amount produced/measured from an experiment is the actual yield.

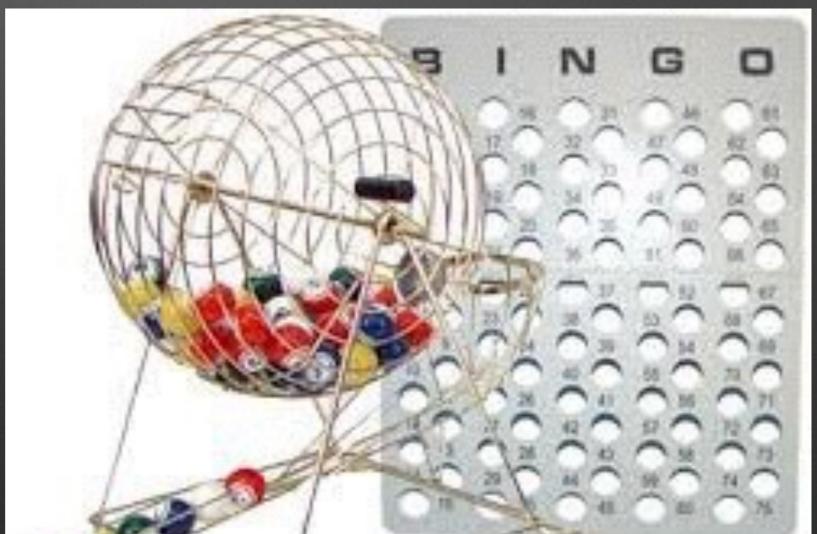
actual
$$\frac{\text{yield}}{\text{yield}} \times 100 = \frac{\text{Percent}}{\text{Yield}}$$
theoretical
$$\text{yield}$$


Life isn't perfect or efficient...

 The methanogens in the previous example only actually produce 13.62 grams of CH₄. What is their percent yield?

A new species....

 A new species of methanogens are discovered who have a 76% yield for methane, how much methane can they produce from the previously determined values?



Exit Ticket

 Why would you add extra reagent to increase your product?

think about....

Warm Up - 3/17/2015

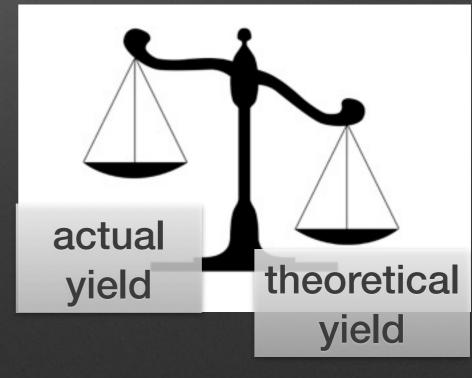
 $2C_8H_{18} + 25O_2 -> 16CO_2 + 18H_2O$

If you have 1 kg of gas in your tank, and 2kg of available oxygen, how much CO₂ will you produce? How much excess reagent is left over?

Step 1: Determine limiting reagent.

Step 2: Determine excess reagent used from limiting reagent.

Step 3: Subtract used from total possible value.



Percent Yield

 Amount of product calculated from balanced equation is the theoretical yield.

 In life nothing is perfect, so not all the theoretical yield is formed. The amount produced/measured from an experiment is the actual yield.

actual
$$\frac{\text{yield}}{\text{yield}} \times 100 = \frac{\text{Percent}}{\text{Yield}}$$
theoretical
$$\text{yield}$$

Revisit warmup

2C₈H₁₈ + 25O₂ -> 16CO₂ + 18H₂O

You found 1,760.4 g CO₂ were produced in the previous example.

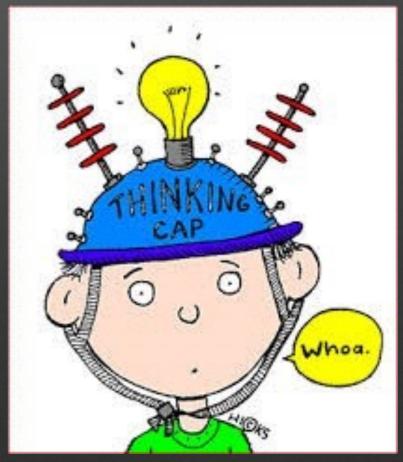
The carburetor is responsible for air flow in your car and is faulty. Your car produces 1000g CO₂, what is your percent yield?

Revisit warmup

2C₈H₁₈ + 25O₂ -> 16CO₂ + 18H₂O

You calculated 1,760.4 g CO₂ were produced in the previous example.

You fix your carburetor and now have a percent yield of 90%, how much CO₂ will you produce?



Limiting Reagent Worksheet #1 Experiments were performed...

	SCIENTIST 1 - MEASURED MASS (ACTUAL YIELD)	SCIENTIST 2 - CALCULATED PERCENT YIELD
YOUR JOB	CALCULATE PERCENT YIELD	CALCULATE ACTUAL YIELD
PROBLEM 1	1.02 g H ₂ O	77%
PROBLEM 2	11.34 g Na ₂ SO ₃	83%
PROBLEM 3	13.84 g Fe ₃ O ₄	65%

Exit Ticket Why might scientists
calculate percent yields
when conducting

experiments?

