30 grams of ammonium nitrate reacts with 50 grams of sodium phosphate

a) Write the balanced reaction.

1 Identify cations/anions

2. Form compounds balancing ions using subscripts.

3. Identify reacton and write products.

4. Write balanced product comopounds using subscripts.

5. Balance reaction using coefficients.

Balanced Reaction:

 $3NH_4NO_3 + Na_3PO_4 --- > (NH_4)_3PO_4 + 3NaNO_3$

Molar Masses: $NH_4NO_3 = 80.052 \text{ g/mol}$ $(NH_4)_3PO_4 = 149.09 \text{ g/mol}$ $Na_3PO_4 = 163.94 \text{ g/mol}$ $NaNO_3 = 84.99 \text{ g/mol}$

b) Which of the reagents is the limiting reagent?

- 1 Pick a product to investigate.
- 2 Complete dimensional analysis for each of the given reagents (reactants)
- 3 Identify limiting reagent based on least amount of product produced.

30 g NH ₄ NO ₃	1 mol NH ₄ NO ₃ 80.05 g NH ₄ NO ₃	2 mol NaNO ₃ 3 mol NH ₄ NO ₃	84.99 g NaNO ₃ 1 mol NaNO ₃	= 21.23 g NaNO ₃ <limiting reagent<="" th=""></limiting>
50 g Na ₃ PO ₄	1 mol Na ₃ PO ₄ 63.94 g Na ₃ PO ₄	2 mol NaNO ₃ 3 mol Na ₃ PO ₄	84.99 g NaNO ₃	= 44.31 g NaNO ₃

c) What is the maximum amount of each product that can be formed?

- 1 First product already determined in b: 21,23g NaNO,
- 2 Use limiting reagent to identify quantity in second product.

$$\frac{30 \text{ g NH}_{4}\text{NO}_{3}}{80.05 \text{ g NH}_{4}\text{NO}_{3}} \frac{1 \text{ mol (NH}_{4})_{3}\text{PO}_{4}}{149.09 \text{ g (NH}_{4})_{3}\text{PO}_{4}} = 18.62 \text{ g (NH}_{4})_{3}\text{PO}_{4}$$

d) How much excess reagent is left over after the reaction is complete?

- 1 Calculate the amount of excess reagent needed from limiting reagent.
- 2 Subtract value found in d1 from value found in a1 for the excess reagent.

$$\frac{30 \text{ g NH}_{4}\text{NO}_{3}}{80.05 \text{ g NH}_{4}\text{NO}_{3}} \frac{1 \text{ mol Na}_{3}\text{PO}_{4}}{3 \text{ mol NH}_{4}\text{NO}_{3}} \frac{163.94 \text{ g Na}_{3}\text{PO}_{4}}{1 \text{ mol Na}_{3}\text{PO}_{4}} = 20.48 \text{ g Na}_{3}\text{PO}_{4}$$

50 g Na₃PO₄ - 20.48 g Na₃PO₄ = 29.52 g Na₃PO₄