Calculating pH

How is pH related to the concentration of hydronium ions?

Why?

In biology and other science courses pH is introduced as a way to quantify the acidity or basicity of a solution. This property can be measured using a pH probe or with an indicator paper strip that changes color at different pH values. But, what is actually being measured? We know that a pH of 7 is neutral, below 7 is acid, and above 7 is base, but why? What in the solution is the paper strip or probe actually reacting with?

Beaker	Solution	Acidic, Basic or Neutral?	[H ₃ O ⁺]	[OH ⁻]	$[\mathrm{H_{3}O^{+}]}\times[\mathrm{OH^{-}}]$
1	0.10 M HCl(aq)	Acidic	1.0×10 ⁻¹ M	1.0×10 ⁻¹³ M	
2	0.0010 M HCl(aq)	Acidic	1.0×10 ⁻³ M	1.0×10 ⁻¹¹ M	
3	0.000010 M HCl(aq)	Acidic	1.0×10 ⁻⁵ M	1.0×10 ⁻⁹ M	
4	0.0000010 M HCl(aq)	Acidic	1.0×10 ⁻⁶ M	1.0×10 ⁻⁸ M	
5	0.00000010 M HCl(aq)	Neutral	1.0×10 ⁻⁷ M	1.0×10 ⁻⁷ M	
6	0.00000010 M NaOH(aq)	Neutral	1.0×10 ⁻⁷ M	1.0×10 ⁻⁷ M	
7	0.0000010 M NaOH(aq)	Basic	1.0×10 ⁻⁸ M	1.0×10 ⁻⁶ M	
8	0.00010 M NaOH(aq)	Basic	1.0×10 ⁻¹⁰ M	1.0×10 ⁻⁴ M	
9	0.010 M NaOH(aq)	Basic	1.0×10 ⁻¹² M	1.0×10 ⁻² M	
10	0.10 M NaOH(aq)	Basic	1.0×10 ⁻¹³ M	1.0×10 ⁻¹ M	

Model 1 – Ion Concentrations for Acids and Bases

1. What does the symbol $[H_3O^+]$ in Model 1 indicate?

- 2. In Beaker 2, which ion has a higher concentration, hydronium ion or hydroxide ion?
- 3. Describe how the concentration of hydronium ion was calculated for Beaker 3 in Model 1 from the concentration of the acid.
- 4. Describe how the concentration of hydroxide ion was calculated for Beaker 8 in Model 1 from the concentration of the base.

- 5. Which ion, hydronium or hydroxide, has a higher concentration in an acidic solution?
- 6. Which ion, hydronium or hydroxide, is more concentrated in a neutral solution?
- 7. Which statement is true for basic solutions?
 - *a*. The hydroxide ion concentration must be less than 1.0×10^{-7} M.
 - *b.* The hydroxide ion concentration must be more than 1.0×10^{-7} M.
 - *c*. The hydroxide ion concentration must be more than or equal to 1.0×10^{-7} M.
- 8. A student makes the following statement on an exam: "Acidic solutions contain hydronium ions, while basic solutions contain hydroxide ions." Is the student's statement correct based on the information in Model 1? Explain.
- 9. Calculate the quantity $[H_3O^+] \times [OH^-]$ for each of the 10 beakers in Model 1. Divide the work among the members in your group.
- 10. If you know the hydronium ion concentration, $[H_3O^+]$, of a solution, how could you determine the hydroxide ion concentration, $[OH^-]$?
- 11. A solution has a hydroxide ion concentration of 1.0×10^{-3} M.
 - a. What is the hydronium ion concentration in the solution? (Show your work.)
 - b. Is the solution acidic, neutral or basic? How do you know?
- 12. A solution has a hydroxide ion concentration of 4.79×10^{-3} M.
 - *a*. What is the hydronium ion concentration in the solution? (Show your work.)
 - b. Is the solution acidic, neutral or basic? How do you know?

Read This!

The value 1.0×10^{-14} is the equilibrium constant for the autoionization of water (K_w) .

 $H_2O + H_2O \rightleftharpoons H_3O^+(aq) + OH^-(aq)$ $K_w = 1.0 \times 10^{-14}$

This equilibrium occurs in all aqueous solutions (acidic, basic, and neutral). The results of this equilibrium are as follows:

- 1. All aqueous solutions have some detectable concentration of both hydronium and hydroxide ions.
- 2. The product of these ion concentrations is always $K_{\rm w}$.

 $K_{\rm w}$ = $[{\rm H}_3{\rm O}^+]$ × $[{\rm O}{\rm H}^-]$ = 1.0×10^{-14}

Model 2 – A Crash Course in Logarithms

log 1	= 0	log 0.1	= -1
log 10	= 1	log 0.01	= -2
log 100	= 2	log 0.001	= -3
log 1000	= 3	$\log (1.0 \times 10^{-4})$	= -4
log (1.0×10 ⁴)	= 4	$\log (1.0 \times 10^{-8})$	= -8

13. Using the examples in Model 2, explain how logarithms are calculated in terms of "factors of ten."

- 14. What would be the logarithm of one million? (Do NOT use your calculator.)
- 15. Take out your scientific calculator.
 - *a.* Enter at least three of the examples shown in Model 2 into your calculator to verify that you know how to find the logarithm of a number.
 - *b.* Use your calculator to find the logarithm of 250.
 - *c.* The number 250 is between 100 and 1000. Explain why your calculator gave you an answer between 2 and 3 for the log of 250. *Hint:* Think about "factors of ten."
- 16. First estimate the answer for each of the following. Then, find the answer using your calculator to check your estimate.

a. 7800 b. 0.045 c. 3.4×10^9 d. 7.2×10^{-4}

	1	2	3	4
Solution	[H ₃ O ⁺] (Decimal notation)	[H ₃ O ⁺] (Scientific notation)	log [H ₃ O ⁺]	pН
Α	0.010 M	$1.0 \times 10^{-2} \mathrm{M}$	$\log (1.0 \times 10^{-2}) = -2.0$	2.0
В	0.0055 M	5.5 × 10 ⁻³ M	$\log(5.5 \times 10^{-3})$	
С		$1.0 \times 10^{-3} \mathrm{M}$	$\log (1.0 \times 10^{-3}) = -3.0$	3.0
D	0.00010 M		$\log (1.0 \times 10^{-4}) = -4.0$	4.0
E	0.000027 M	$2.7 \times 10^{-5} \mathrm{M}$	$\log (2.7 \times 10^{-5})$	

Model 3 – Logarithms and pH

17. Columns 1 and 2 in Model 3 both give the molar concentration of hydronium ion in solution.

a. What is the difference in the way the first two columns express this data?

- b. Fill in the missing values in columns 1 and 2 of Model 3.
- 18. Estimate the missing logarithms for solutions B and E in Model 3. Then verify the answers using a calculator.
- 19. Using the examples given in Model 3, write a sentence or a mathematical equation that describes how to calculate pH from the hydronium ion concentration of a solution.
- 20. Fill in the missing pH values in column 4 of Model 3.
- 21. Calculate the pH of a solution that has a hydronium ion concentration of: *a.* 1×10⁻⁸ M *b.* 0.007 M
- 22. Discuss in your group how you would find the hydronium ion concentration in a solution if you were given the pH. Check your procedure using several examples from Model 3.
- 23. Calculate the hydronium ion concentration in solutions with a pH of:*a.* 6.0*b.* 5.43

- 24. Why does neutral water have a pH of 7?
- 25. Which solution has a greater hydronium ion concentration, one that has a pH of 4 or one that has a pH of 8? Explain.
- 26. A student makes the following statement on an exam:

"A solution with pH = 1 is twice as concentrated in hydronium ions as a solution with pH = 2." Explain why this statement is not correct, and write a sentence that describes the correct relationship.

Extension Questions

Solution	[H ₃ O ⁺]	[OH ⁻]	pН	рОН	pH + pOH
А	1×10 ⁻³ M	$1 \times 10^{-11} M$	3.0	11.0	
В	1×10 ⁻⁹ M	1×10 ⁻⁵ M	9.0	5.0	
С	5.2×10 ⁻³ M	1.9×10 ⁻¹² M	2.28	11.72	
D				3.68	
E			9.28		
F		3.02×10 ⁻³ M			

Model 4 – pH and pOH

27. Look at the examples in Model 4. If you know the concentration of hydroxide ion, [OH⁻], in a solution, how can you determine the pOH?

- 28. Consider the data in Model 4.
 - *a.* Calculate pH + pOH for solutions A, B and C.
 - *b.* How could you determine the pH of a solution if you know the pOH?
- 29. Fill in all of the missing values in Model 4.
- 30. Calculate the $[OH^-]$ and pOH of a solution that has a $[H_3O^+]$ of 1×10^{-4} M.